[欧拉函数]外星人
外星人
Time Limit: 3 Sec Memory Limit: 128 MB
Description
Input
Output
输出test行,每行一个整数,表示答案。
Sample Input
1
2
2 2
3 1
Sample Output
3
HINT
Test<=50 Pi<=10^5,1<=Q1<=10^9
Main idea
给定一个数,用Πp[i]^qi的形式表示,问最少需要对这个数字x进行几次x=Φ(x)操作使得x=1。
Solution
这显然是一道数论题。
首先想到了只有Φ(2)=1,所以最后答案必然需要转成带2的形式,我们先考虑一个数字,由欧拉函数的推导公式Φ(Πp[i]^q[i])=Π(p[i]-1)*p[i]^(q[i]-1)可以发现每次求Φ会消去一个质因数2,并且产生若干个2(产生的2是有上限的)。
这句话是什么意思呢?
我们举个例子:讨论一个偶数180=2^2 * 3^2 * 5,Φ(180)=2^1 * (3-1)*3 * (5-1)=48,这里产生了3个2,消去了1个2。
所以我们只要求出产生了几个2即可(由于除了Φ(2)以外的数都是偶数,所以任意奇数只要经过一遍求Φ就可以变为偶数来处理,次数+1),因为每次只能消去一个1,所以答案就应该是这个数分解出的2的个数。
知道欧拉函数是一个积性函数,并且我们现在求的显然是一个完全积性函数,由于这个性质,求分解出几个2可以使用线性筛来实现,对于每一项p[i]^q[i]分解出的个数就是(p[i]分解出的个数*q[i]),答案就是Σ(每一项分解出的个数)。
Code
1 |
|
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.