软件开发

Time Limit: 10 Sec Memory Limit: 162 MB

Description

某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。

Input

第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn.

Output

最少费用

Sample Input

4 1 2 3 2 1
 8 2 1 6

Sample Output

38

HINT

1≤f,fA,fB≤60,1≤n≤1000

Main idea

每天要用Ni块餐巾,有如下几种选择:
    1.买新的,每块f元;
    2.用A方式处理,a天后得到餐巾,每块花费fA元;
    3.用B方式处理,b天后得到餐巾,每块花费fB元。
  问满足要求的最小花费。

Solution

显然是费用流,拆成两个点,Xi表示用完的,Yi表示需要的,那么建模显然:(令x表示这天需要多少餐巾)
    S->Xi 流量为x,费用为0, mean:这天需要这么多
    Yi->T 流量为x,费用为0, mean:这天需要这么多
    S->Yi 流量为INF,费用为f, mean:全部买新的
    Xi->Xi+1 流量为INF,费用为0, mean:把这天用完的餐巾放到下一天处理
    Xi->Yi+a+1 流量为INF,费用为fA, mean:用A方式处理
    Xi->Yi+b+1 流量为INF,费用为fB, mean:用B方式处理

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include<bits/stdc++.h>
using namespace std;
typedef long long s64;

const int ONE = 1000001;
const int EDG = 1000001;
const int INF = 2147483640;

int n,a,b,f,fA,fB;
int x;
int X[ONE],Y[ONE];
int S,T;
int next[EDG],first[ONE],go[EDG],from[EDG],pas[EDG],w[EDG],tot;
int dist[ONE],pre[ONE],vis[ONE];
int tou,wei,q[ONE];
int Ans;

inline int get()
{
int res=1,Q=1; char c;
while( (c=getchar())<48 || c>57)
if(c=='-')Q=-1;
if(Q) res=c-48;
while((c=getchar())>=48 && c<=57)
res=res*10+c-48;
return res*Q;
}

void Add(int u,int v,int flow,int z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; from[tot]=u; pas[tot]=flow; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; from[tot]=v; pas[tot]=0; w[tot]=-z;
}

bool Bfs()
{
for(int i=S;i<=T;i++) dist[i] = INF;
dist[S] = 0; vis[S] = 1;
tou = 0; wei = 1; q[1] = S;
while(tou < wei)
{
int u = q[++tou];
for(int e=first[u]; e; e=next[e])
{
int v = go[e];
if(dist[v] > dist[u] + w[e] && pas[e])
{
dist[v] = dist[u] + w[e]; pre[v] = e;
if(!vis[v])
{
vis[v] = 1;
q[++wei] = v;
}
}
}
vis[u] = 0;
}
return dist[T] != INF;
}

void Deal()
{
int x = INF;
for(int e=pre[T]; e; e=pre[from[e]]) x = min(x,pas[e]);
for(int e=pre[T]; e; e=pre[from[e]])
{
pas[e] -= x;
pas[((e-1)^1)+1] += x;
Ans += x*w[e];
}
}

int main()
{
n=get(); a=get(); b=get();
f=get(); fA=get(); fB=get();
S=0; T=n*2+5;
for(int i=1;i<=n;i++) X[i]=i, Y[i]=i+n;
for(int i=1;i<=n;i++)
{
x = get();
Add(S,X[i], x,0);
Add(Y[i],T, x,0);
Add(S,Y[i], INF,f);
if(i!=n) Add(X[i],X[i+1], INF,0);
if(Y[i]+a+1 < T)Add(X[i],Y[i]+a+1, INF,fA);
if(Y[i]+b+1 < T)Add(X[i],Y[i]+b+1, INF,fB);
}

while(Bfs()) Deal();
printf("%d",Ans);

}