[DP]字串变化
字串变化
Time Limit: 10 Sec Memory Limit: 128 MB
Description
定义一个(大写字母)字符串集合{S},初始时值包含一个给定的字符串S1,每次从中任意取出一个字符串,将它变换后再放入集合中。要求新的字符串在集合中没有出现过。
变换的规则:在变化前、后,字符串均有大写字母组成,每次只改动一个位置,使它的ASCLL加1。例如:‘A’ –> ‘B’。如果位置为‘Z’,则无法改动。
若干次操作后,该集合的元素个数一定会达到最大。
对最后的集合(已按字典序排列)中的Si(i >1),定义Sj=P[Si](Si由Sj变化而来)。
求最大元素个数及{P}的方案数。(详情见样例。)
Input
第1行有1个由大写字母组成的字符串。
Output
输出2行,每行包含一个数,第一行表示最大元素个数,第二行表示方案数,答案都模10007。
Sample Input
XYZ
Sample Output
6
4
explain:
最终集合为{XYZ,XZZ,YYZ,YZZ,ZYZ,ZZZ}
{P}方案有{0,1,1,2,3,4},{0,1,1,3,3,4},{0,1,1,2,3,5},{0,1,1,3,3,5}
HINT
初始字符串长度<=1000.
Solution
第一问乘一下就好了,这里讨论一下第二问。
用**‘Z’-ai得到一个数字串,那么操作就变成了:每次将一个数字-1,最后全部减成0。比如’XYZ’,我们将其变成’012’。
然后考虑状态是怎么变来的:
显然,有几位是不满的,就有几种转移来的方法**(其中任意一位数字+1,即可得到一种父状态)。
记一个状态可以由k个状态转移过来,然后答案显然就是:πk。
我们考虑,
我们得到一个长度为n的01串vis,如果这一位是1表示这一位不满。
那么这个01串对答案的贡献就是:k ^ (π [vis_i=1]*a_i)。(k表示1的个数)
为什么呢?对于一个位置,当这一位是[0,ai-1]都是不满的,个数就是ai。
然后这样枚举每一位是否满,可以做到O(2^n)。
我们考虑优化:
把k相同的放在一起计算,记贡献为k^num[k]。num[k]即是各种1的个数为k情况的指数之和。
num怎么得到呢?
用f[i][j]表示到了第i位,有j个数不满的方案数,显然可以得到这样的递推式子:
f[i][j] = f[i-1][j] + f[i-1][j-1] * (‘Z’-a[i])
然后Ans = π k^f[n][k],就解决了这题qwq。
Code
1 |
|